Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation
نویسندگان
چکیده
We consider N ×N Hermitian random matrices with independent identically distributed entries (Wigner matrices). We assume that the distribution of the entries have a Gaussian component with variance N for some positive β > 0. We prove that the local eigenvalue statistics follows the universal Dyson sine kernel. AMS Subject Classification: 15A52, 82B44 Running title: Universality for Wigner matrices
منابع مشابه
Bulk Universality for Wigner Matrices
We consider N ×N Hermitian Wigner random matrices H where the probability density for each matrix element is given by the density ν(x) = e. We prove that the eigenvalue statistics in the bulk is given by Dyson sine kernel provided that U ∈ C(R) with at most polynomially growing derivatives and ν(x) ≤ C e for x large. The proof is based upon an approximate time reversal of the Dyson Brownian mot...
متن کاملUniversality of Wigner Random Matrices
We consider N×N symmetric or hermitian random matrices with independent, identically distributed entries where the probability distribution for each matrix element is given by a measure ν with a subexponential decay. We prove that the local eigenvalue statistics in the bulk of the spectrum for these matrices coincide with those of the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ...
متن کاملUniversality in Several-matrix Models via Approximate Transport Maps
We construct approximate transport maps for perturbative several-matrix models. As a consequence, we deduce that local statistics have the same asymptotic as in the case of independent GUE or GOE matrices (i.e., they are given by the sine-kernel in the bulk and the Tracy-Widom distribution at the edge), and we show averaged energy universality (i.e., universality for averages of m-points correl...
متن کاملUniversality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices
Abstract. Consider an N × N hermitian random matrix with independent entries, not necessarily Gaussian, a so called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N → ∞, the same as that of hermitian random matrices from GUE. We prove this con...
متن کاملThe largest eigenvalue of rank one deformation of large Wigner matrices
The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue of some non necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (c.f. [12]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of hig...
متن کامل